Course curriculum

    1. 1.1 - Getting Started with Python

    2. 1.2 - Python Programming Basics

    3. Test Your Knowledge

    1. 2.1 NumPy for Numerical Data

    2. 2.2 Why Do We Need Numpy?

    3. 2.3 Multidimensional Arrays

    4. 2.4 Basic Statistics with NumPy

    5. 2.5 Reshaping and Transforming Data

    6. 2.6 Indexing and Sorting Data

    1. 3.1 Introduction to Pandas

    2. 3.1.1 Practical Activity - Introduction

    3. 3.1.2 Practical Activity - DataFrames

    4. 3.1.3 Practical Activity - Series

    5. 3.1.4 Practical Activity - Filtering

    6. 3.1.5 Practical Activity - Player Picks

    7. 3.2 Exploring the Data Frame with Pandas

    8. 3.2.1 Practical Activity - Exploring DataFrames

    9. 3.2.2 Practical Activity - Currency Data

    10. 3.2.3 Practical Activity - Modifying DataFrames

    11. 3.2.4 Practical Activity - Spotify Data Explorer

    12. 3.2.5 Practical Activity - Pandas Dataframe Sorting

    13. 3.2.6 Practical Activity - Filtering and Selection

    14. 3.2.7 Practical Activity - Explore, Filter, Sort and Analyse

    15. 3.2.8 Practical Activity - Merge and Joining Data

    16. 3.2.9 Practical Activity - Merged Markets

    17. 3.3 Cleaning Data with Pandas and Python

    18. 3.3.1 Practical Activity - Cleaning Missing Values

    19. 3.3.2 Practical Activity - Cleaning Duplicate Data

    20. 3.3.3 Practical Activity - Practice Data Cleaning

    21. 3.3.4 Practical Activity - Invalid Values

    22. 3.3.5 Practical Activity - From Raw to Refined

    1. 4.1 Visualising Data with Matplotlib

    2. 4.1.1 Practical Activity - Introduction

    3. 4.1.2 Practical Activity - Advanced Plot Positioning

    4. 4.1.3 Practical Activity - Enhancing Visualizations

    5. 4.1.4 Practical Activity - Understanding Matplotlib's Architecture

    6. 4.1.5 Practical Activity - Understanding Relationship Plots

    7. 4.1.6 Practical Activity - Exploring Relationships

    8. 4.1.7 Practice Matplotlib with Business Sales Snalysis

    9. 4.1.8 Practical Activity - U.S. Budget

    10. 4.1.9 Practical Activity - Distribution Plots

    11. 4.1.10 Practical Activity - Distribution Plots : Black Friday

    12. 4.1.11 Practical Activity - Mapping COVID-19 Crisis

    13. 4.2 Advanced Data Visualisation

    14. Test Your Knowledge

    1. 5.1 Time Series Analysis

    2. 5.2 Introduction to Machine Learning

    3. Test Your Knowledge

    1. 6.1 Project Planning and Data Collection

    2. 6.2 Data Preprocessing and EDA

    3. Test Your Knowledge

About this course

  • 74 lessons
  • 11 hours of video content

Discover your potential, starting today